Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition.

Identifieur interne : 000815 ( Main/Exploration ); précédent : 000814; suivant : 000816

Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition.

Auteurs : Christopher F. Strock [États-Unis] ; Laurie Morrow De La Riva [États-Unis] ; Jonathan P. Lynch [États-Unis]

Source :

RBID : pubmed:29118249

Descripteurs français

English descriptors

Abstract

We tested the hypothesis that reduced root secondary growth of dicotyledonous species improves phosphorus acquisition. Functional-structural modeling in SimRoot indicates that, in common bean (Phaseolus vulgaris), reduced root secondary growth reduces root metabolic costs, increases root length, improves phosphorus capture, and increases shoot biomass in low-phosphorus soil. Observations from the field and greenhouse confirm that, under phosphorus stress, resource allocation is shifted from secondary to primary root growth, genetic variation exists for this response, and reduced secondary growth improves phosphorus capture from low-phosphorus soil. Under low phosphorus in greenhouse mesocosms, genotypes with reduced secondary growth had 39% smaller root cross-sectional area, 60% less root respiration, 27% greater root length, 78% greater shoot phosphorus content, and 68% greater shoot mass than genotypes with advanced secondary growth. In the field under low phosphorus, these genotypes had 43% smaller root cross-sectional area, 32% greater root length, 58% greater shoot phosphorus content, and 80% greater shoot mass than genotypes with advanced secondary growth. Secondary growth eliminated arbuscular mycorrhizal associations as cortical tissue was destroyed. These results support the hypothesis that reduced root secondary growth is an adaptive response to low phosphorus availability and merits investigation as a potential breeding target.

DOI: 10.1104/pp.17.01583
PubMed: 29118249
PubMed Central: PMC5761805


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition.</title>
<author>
<name sortKey="Strock, Christopher F" sort="Strock, Christopher F" uniqKey="Strock C" first="Christopher F" last="Strock">Christopher F. Strock</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Plant Science, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Morrow De La Riva, Laurie" sort="Morrow De La Riva, Laurie" uniqKey="Morrow De La Riva L" first="Laurie" last="Morrow De La Riva">Laurie Morrow De La Riva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Plant Science, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lynch, Jonathan P" sort="Lynch, Jonathan P" uniqKey="Lynch J" first="Jonathan P" last="Lynch">Jonathan P. Lynch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802 jpl4@psu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29118249</idno>
<idno type="pmid">29118249</idno>
<idno type="doi">10.1104/pp.17.01583</idno>
<idno type="pmc">PMC5761805</idno>
<idno type="wicri:Area/Main/Corpus">000A89</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A89</idno>
<idno type="wicri:Area/Main/Curation">000A89</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A89</idno>
<idno type="wicri:Area/Main/Exploration">000A89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition.</title>
<author>
<name sortKey="Strock, Christopher F" sort="Strock, Christopher F" uniqKey="Strock C" first="Christopher F" last="Strock">Christopher F. Strock</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Plant Science, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Morrow De La Riva, Laurie" sort="Morrow De La Riva, Laurie" uniqKey="Morrow De La Riva L" first="Laurie" last="Morrow De La Riva">Laurie Morrow De La Riva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Plant Science, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lynch, Jonathan P" sort="Lynch, Jonathan P" uniqKey="Lynch J" first="Jonathan P" last="Lynch">Jonathan P. Lynch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802 jpl4@psu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Cell Respiration (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Hyphae (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phaseolus (growth & development)</term>
<term>Phaseolus (metabolism)</term>
<term>Phaseolus (physiology)</term>
<term>Phenotype (MeSH)</term>
<term>Phosphorus (metabolism)</term>
<term>Plant Development (MeSH)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Roots (anatomy & histology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomasse (MeSH)</term>
<term>Développement des plantes (MeSH)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Hyphae (physiologie)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phaseolus (croissance et développement)</term>
<term>Phaseolus (métabolisme)</term>
<term>Phaseolus (physiologie)</term>
<term>Phosphore (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Racines de plante (anatomie et histologie)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (métabolisme)</term>
<term>Respiration cellulaire (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phaseolus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phaseolus</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phaseolus</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phaseolus</term>
<term>Phosphore</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Hyphae</term>
<term>Mycorhizes</term>
<term>Phaseolus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hyphae</term>
<term>Mycorrhizae</term>
<term>Phaseolus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Cell Respiration</term>
<term>Computer Simulation</term>
<term>Phenotype</term>
<term>Plant Development</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Développement des plantes</term>
<term>Phénotype</term>
<term>Respiration cellulaire</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We tested the hypothesis that reduced root secondary growth of dicotyledonous species improves phosphorus acquisition. Functional-structural modeling in SimRoot indicates that, in common bean (
<i>Phaseolus vulgaris</i>
), reduced root secondary growth reduces root metabolic costs, increases root length, improves phosphorus capture, and increases shoot biomass in low-phosphorus soil. Observations from the field and greenhouse confirm that, under phosphorus stress, resource allocation is shifted from secondary to primary root growth, genetic variation exists for this response, and reduced secondary growth improves phosphorus capture from low-phosphorus soil. Under low phosphorus in greenhouse mesocosms, genotypes with reduced secondary growth had 39% smaller root cross-sectional area, 60% less root respiration, 27% greater root length, 78% greater shoot phosphorus content, and 68% greater shoot mass than genotypes with advanced secondary growth. In the field under low phosphorus, these genotypes had 43% smaller root cross-sectional area, 32% greater root length, 58% greater shoot phosphorus content, and 80% greater shoot mass than genotypes with advanced secondary growth. Secondary growth eliminated arbuscular mycorrhizal associations as cortical tissue was destroyed. These results support the hypothesis that reduced root secondary growth is an adaptive response to low phosphorus availability and merits investigation as a potential breeding target.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29118249</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>176</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition.</ArticleTitle>
<Pagination>
<MedlinePgn>691-703</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.17.01583</ELocationID>
<Abstract>
<AbstractText>We tested the hypothesis that reduced root secondary growth of dicotyledonous species improves phosphorus acquisition. Functional-structural modeling in SimRoot indicates that, in common bean (
<i>Phaseolus vulgaris</i>
), reduced root secondary growth reduces root metabolic costs, increases root length, improves phosphorus capture, and increases shoot biomass in low-phosphorus soil. Observations from the field and greenhouse confirm that, under phosphorus stress, resource allocation is shifted from secondary to primary root growth, genetic variation exists for this response, and reduced secondary growth improves phosphorus capture from low-phosphorus soil. Under low phosphorus in greenhouse mesocosms, genotypes with reduced secondary growth had 39% smaller root cross-sectional area, 60% less root respiration, 27% greater root length, 78% greater shoot phosphorus content, and 68% greater shoot mass than genotypes with advanced secondary growth. In the field under low phosphorus, these genotypes had 43% smaller root cross-sectional area, 32% greater root length, 58% greater shoot phosphorus content, and 80% greater shoot mass than genotypes with advanced secondary growth. Secondary growth eliminated arbuscular mycorrhizal associations as cortical tissue was destroyed. These results support the hypothesis that reduced root secondary growth is an adaptive response to low phosphorus availability and merits investigation as a potential breeding target.</AbstractText>
<CopyrightInformation>© 2018 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Strock</LastName>
<ForeName>Christopher F</ForeName>
<Initials>CF</Initials>
<Identifier Source="ORCID">0000-0003-1432-8130</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morrow de la Riva</LastName>
<ForeName>Laurie</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lynch</LastName>
<ForeName>Jonathan P</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">0000-0002-7265-9790</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802 jpl4@psu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027805" MajorTopicYN="N">Phaseolus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29118249</ArticleId>
<ArticleId IdType="pii">pp.17.01583</ArticleId>
<ArticleId IdType="doi">10.1104/pp.17.01583</ArticleId>
<ArticleId IdType="pmc">PMC5761805</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2015 Sep;38(9):1775-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25255708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Aug;174(4):2333-2347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28667049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Oct;166(2):726-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24891611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Sep 12;4:355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24062755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1041-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21610180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Dec;166(4):1943-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Feb;239(2):325-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Oct;112(6):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23925972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Soil. 2001 May;232(1-2):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Oct;98(4):693-713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16769731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):5004-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1430-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25699587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Feb;52(355):329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Dec;166(4):2166-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25293960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2011 Apr;107(5):829-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20971728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Sep;109(1):7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:695-718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Feb;130(2):419-431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27864597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Aug;215(3):1274-1286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28653341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Nov;168(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 1996 Feb;132(2):281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11541132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1381-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2008 Dec;95(12):1506-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Strock, Christopher F" sort="Strock, Christopher F" uniqKey="Strock C" first="Christopher F" last="Strock">Christopher F. Strock</name>
</region>
<name sortKey="Lynch, Jonathan P" sort="Lynch, Jonathan P" uniqKey="Lynch J" first="Jonathan P" last="Lynch">Jonathan P. Lynch</name>
<name sortKey="Morrow De La Riva, Laurie" sort="Morrow De La Riva, Laurie" uniqKey="Morrow De La Riva L" first="Laurie" last="Morrow De La Riva">Laurie Morrow De La Riva</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000815 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000815 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29118249
   |texte=   Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29118249" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020